CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

1	(a)	(i)	named noble gas accept: any noble gas accept: symbol	[1]
		(ii)	H ₂ O / CO ₂ not : names not : equations	[1]
	(b)	(i)	oxygen and nitrogen (in air) (react) at high temperature accept: in engines / lightning not: in exhausts	[1] [1]
		(ii)	fossil fuels / fuels which contain sulfur accept: named fossil fuel such as coal / oil / natural gas burn / combust	[1] [1]
		(iii)	any two from: damage buildings / soil acidification / leaching from soil / soil nutrients bed unavailable / kill microbes / acidify lakes / kill fish / damage trees / reduction in growth / crop loss	
	(c)	(i)	oxygen reacts with copper to form copper oxide (which is black)	[1] [1]
		(ii)	measure volume at room temperature / gas has different volumes at different temperatures / volume of gas depends on temperature / hot gas has higher volumeat causes expansion (of gases) / ORA	
		(iii)	no oxygen left or <u>all</u> the oxygen has reacted (with copper)	[1]
		(iv)	39–40 cm ³ note: units required	[1]
2	(a)	B 39	Kitive charge +	[1] [1]
		C 65	⁵ ₀ Zn	[1]
		D 16	⁶ ₈ O rge 2–	[1] [1]
		E 70	⁰ 1Ga	[1]
	(b)	nun	nber of p = number of e	[1]
		nun	nber of p > number of e	[1]
		nun	nber of p < number of e	[1]

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

3	(a)	(i)	complete combustion / combustion in excess oxygen	[1]
			of fuels containing carbon / fossil fuels / hydrocarbon (fuels)	[1]
			produce carbon dioxide / increase percentage of CO ₂ in atmosphere	[1]
		(ii)	living things / cells / plants / animals / humans / micro-organisms (oxidise / react with) oxygen and food / foodstuff / named foodstuff / carbohydraf sugar / glucose	[1] te / [1]
			produces carbon dioxide	[1]
	(b)	(i)	glucose or starch or carbohydrate	[1]
			oxygen	[1]
		(ii)	light / sunlight / sun / UV	[1]
			chlorophyll accept: chloroplast	[1]
4	(a)	(i)	first reaction volume / moles / molecules of reactants and products are different	[1]
			second reaction volume / moles / molecules of reactants and products are the same	[1]
		(ii)	first reaction (forward) reaction is endothermic second reaction (forward) reaction is exothermic	[1] [1]
	(b)	(i)	$C_8H_{18} \rightarrow 2C_4H_8 + H_2$	[1]
		(ii)	$2H^+ + 2e \rightarrow H_2$	[2]
			or $2H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ accept: $-2e$ on right hand side accept: e^- note: not balanced = 1	
		(iii)	chlorine / Cl_2 / cond: water treatment / solvents / plastics / PVC / bleach / disinfectants / HC l / bacteria / sterilising water / chlorination of water / swimming pools / pesticide herbicides / insecticides / germicides / pharmaceuticals	
			sodium hydroxide/NaOH	[1]
			cond: making soap / degreasing / making paper / detergents / bio-diesel / paint stripp clearing drains / alumina from bauxite / oven cleaner / bleach	er / [1]

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

5	(a)	(i)	does not decay or non-biodegradable or flexible or bendable or easily moulded or low density / light / lightweight or waterproof / insoluble in water or does not corrode or durable [1]
		(ii)	any two from: [2] chlorine hydrogen chloride carbon monoxide
	(b)	(i)	CH_3 — $CH = CH_2$ [1] note: can be fully or semi-displayed, $C = C$ <u>must</u> be shown
		(ii)	correct repeat unit $-CH(C_6H_5)-CH_2-$ [1]
			continuation shown [1]
	(c)	_	cose two products (polymer and water) / condensation (polymerisation) / (small) ecules removed [1]
		phe	enylethene one product (polymer) / addition (polymerisation) [1]
6	(a)	(i)	ions cannot move / no free ions in solid state [1] ions can move / free ions in liquid state [1] note: ions can only move in liquid state = 2
		(ii)	reduce melting point / reduce energy costs / better conductor when dissolved in cryolite [1]
		(iii)	burns in oxygen / reacts with oxygen / oxidised by oxygen / forms carbon dioxide / forms carbon monoxide [1]
		(iv)	high melting point / inert / unreactive [1]
	(b)	prot	tective / unreactive / resists / prevents corrosion / non-porous (layer) [1]
		of (a	aluminium) oxide [1]
	(c)	(i)	good conductor (of electricity) [1] low density / light / lightweight [1]
		(ii)	steel core (increased) strength / prevent sagging / to increase separation of pylons / support [1]

[1]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

7 (a) (i)	CH ₃ COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / C C ₂ H ₅ OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not : –OCO– linkage	H ₃ CO ₂ C ₂ H ₅ /	
	note: formulae can be displayed or semi-displayed note: penalise sticks (i.e. any missing atoms)		[1]
(ii)	butyl methanoate		[1]
(b) (i)	fats / vegetable oils / triglycerides / lipids		[1]
(ii)	two correct ester linkages, e.g. –OOC / –O ₂ C and –COO	/ -CO ₂	[1]
	contents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 continuation bonds at both ends		[1] [1]
(c) (i)	to make colourless / invisible (spots) visible / coloured / seen / position made clear / indicate		[1] [1]
(ii)	$\frac{\text{distance travelled by sample}}{\text{distance travelled by solvent (front)}} = R_f$		[1]
(iii)	sample 1 R_f = 0.20 to 0.24 tartaric (acid) sample 2 R_f = 0.44 to 0.48 malic (acid)		[1] [1]
8 (a) (i)	(the number of particles which is equal to the number of or the mass $\underline{\text{in grams}}$ which contains the Avogadro's constant or 6 to 6.023 \times 10 ²³ of atoms / particles or (the amount of substance which has a mass equal to) it atomic mass / relative molecular mass $\underline{\text{in grams}}$ or (the amount of substance which has a volume equal to) $\underline{\text{in grams}}$	ant number of particles ions / molecules / ele relative formula mass	ectrons / / relative
(ii)	(Avogadro's constant is the) number of particles / atoms a substance or the number of carbon atoms in 12 g of C(12). or the number of particles / molecules in 24 dm 3 of a gas at or 6 to 6.023×10^{23} (particles / atoms / ions / molecules / el	RTP	[1] e mole of [1]
(b) CI	H_4 and SO_2		[1]

2/16 = 1/8 or 0.125 moles of CH₄ **AND** 8/64 = 1/8 or 0.125 moles of SO₂

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

(c) (i) 4.8/40 = 0.12 moles of Ca 3.6/18 = 0.2 moles of H_2O **both** correct [1] (ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles / 4.32 g of H₂O [1] there is not enough / there are 0.2 moles / 3.6 g of H₂O [1] Ca is in excess (no mark) (because 0.2 moles / 3.6g of water will react with) 0.1moles/4.0g of Ca [1] there is more than that / there are 0.12 moles / 4.8 g of Ca [1] or Ca is in excess (no mark) because the mole ratio Ca:H₂O is 3:5 / mass ratio 4:3 [1] which is bigger than the required mole ratio of 1:2 / mass ratio 10:9 [1] Ca is in excess (no mark) because the mole ratio H₂O:Ca is 5:3 / mass ratio 3:4 [1] which is smaller than the required mole ratio of 2:1 / mass ratio 9:10 [1] (iii) $0.02 \times 40 = 0.8$ (g) [1]